This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. # Thermodynamic derivation of the energy of activation for ice nucleation #### D. Barahona NASA Goddard Space Flight Center, Greenbelt, MD, USA Received: 15 May 2015 - Accepted: 09 June 2015 - Published: 03 July 2015 Correspondence to: D. Barahona (donifan.o.barahona@nasa.gov) Published by Copernicus Publications on behalf of the European Geosciences Union. Discussion Paper ## ACPD 15, 18151-18179, 2015 ## **Activation energy** D. Barahona Title Page Discussion Paper Discussion Paper Conclusions References Tables **Abstract** Introduction Back Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Paper The activation energy controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk this approach may introduce bias in calculated nucleation rates. In this work a phenomenological model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets, however may affect the formation of ice in haze aerosol particles. The phenomenological model introduced in this work provides an independent estimation of the activation energy and the homogenous ice nucleation rate, and it may help to improve the interpretation of experimental results and the development of parameterizations for cloud formation. Ice nucleation in cloud droplets and aerosol particles leads to cloud formation at low temperature and promotes cloud glaciation and precipitation (Pruppacher and Klett, 1997). In absence of ice nuclei it proceeds by homogeneous freezing. Modeling and **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page Discussion Paper Discussion Paper Discussion Paper **Abstract** Conclusions Introduction References **Tables** **Figures** Full Screen / Esc Printer-friendly Version Interactive Discussion Introduction experimental studies suggest a significant contribution of homogeneous freezing to the formation of clouds in the upper troposphere (Barahona and Nenes, 2011; Barahona et al., 2014; Gettelman et al., 2012; Jensen et al., 2013). The parameterization of ice nucleation is critical to the proper representation of clouds in atmospheric models. In 5 most cloud models it is done using empirical correlations (e.g., Lohmann and Kärcher, 2002; Kärcher and Burkhardt, 2008; Barahona et al., 2010, 2014). The most common approach uses the so-called water activity criterion (Koop et al., 2000) where the homogeneous nucleation rate, J_{hom} , is parameterized in terms of the difference between the water activity, $a_{\rm w}$, and its equilibrium value, $a_{\rm w.eq}$. The greatest advantage of the water activity criterion is that it is independent of the nature of the solute and therefore facilitates the formulation of general parameterizations of ice nucleation (Barahona and Nenes, 2008; Kärcher and Lohmann, 2002; Liu and Penner, 2005). Empirical correlations provide a simple way to parameterize ice nucleation however provide limited information on the nature of ice formation. Theoretical models help to elucidate the mechanism of ice nucleation and to explain and extent experimental results. Over the last decade molecular dynamics (MD) and other detailed methods have provided an unprecedented look at the microscopic mechanism of ice formation (Espinosa et al., 2014). It is known now that the formation of stable ice germs requires the cooperative rearrangement of several molecules (Matsumoto et al., 2002; Moore and Molinero, 2011) and is preceded by structural transformations within the liquid phase (Moore and Molinero, 2011; Bullock and Molinero, 2013). Detailed experiments and MD simulations have shown that instead of forming a single stable structure, several metastable ice structures likely exist during the first stages of ice nucleation (Moroni et al., 2005; Malkin et al., 2012; Russo et al., 2014). There is also a profound relation between anomalies in the properties of water at low temperature and the formation of ice (Buhariwalla et al., 2015), and the relation between low and high density regions within supercooled water and the onset of ice nucleation is starting to be elucidated (Kawasaki and Tanaka, 2010; Singh and Bagchi, 2014; Bullock and Molinero, 2013). **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page **Abstract** Introduction Conclusions References **Tables** **Figures** \triangleright Close Full Screen / Esc Printer-friendly Version Phenomenological models use mechanistic assumptions to describe the formation of ice. Although less detailed in nature than MD, they are more amenable to the development of parameterizations and to the interpretation of experimental results. The quintessential example of such models is the classical nucleation theory, CNT. Ac-5 cording to CNT ice formation proceeds by spontaneous density fluctuations within the liquid phase forming an initial stable ice germ, which then grows by incorporation of water molecules from an equilibrium cluster population (Kashchiev, 2000). CNT provides a framework to understand ice nucleation and has been instrumental in the development of parameterizations from experimental data (e.g., Pruppacher and Klett, 1997; Khvorostyanov and Curry, 2009; Murray et al., 2010). On the other hand, J_{hom} estimated with CNT and using independent estimates of thermodynamic parameters typically results in stark disagreement with measurements (Pruppacher and Klett, 1997; Kawasaki and Tanaka, 2010; Barahona, 2014). Thus CNT is commonly used semiempirically, fitting several parameters of the theory, most commonly the liquid-ice interfacial tension, σ_{iw} , and the activation energy, ΔG_{act} , to measured nucleation rates (e.g., Jeffery and Austin, 1997; Khvorostyanov and Curry, 2004; Murray et al., 2010; Ickes et al., 2015). Using CNT semi-empirically has the disadvantage that the theory cannot be decoupled from experimental measurements of J_{hom} . It has been shown that σ_{iw} obtained by fitting CNT to measured nucleation rates tends to be biased high to account for mixing effects neglected in common formulations of CNT (Barahona, 2014). Moreover, the dependency of σ_{iw} on temperature tends to depend on the value of other fitted parameters of the theory (Ickes et al., 2015). Recently Barahona (2014) (hereinafter B14) introduced a mechanistic model of the ice-liquid interface in terms of thermodynamic variables, without fitting CNT to measured nucleation rates. This was done by hypothesizing the existence of a transition layer around the germ with chemical potential defined by the entropy of the ice and the enthalpy of the liquid, and using the model of Spaepen (1975) to define the interface thickness. This approach was termed the negentropic nucleation framework (NNF). Recent MD simulations showing the existence **ACPD** 15, 18151–18179, 2015 **Activation energy** Title Page D. Barahona **Abstract** Introduction Conclusions References **Tables** **Figures** Full Screen / Esc Printer-friendly Version of a low density region around the ice germ support the NNF model (Singh and Bagchi, 2014). Introducing NNF into CNT and correcting the nucleation work for mixing effects resulted in good agreement of predicted J_{hom} with experimental results (Barahona, 2014). NNF was also shown to be consistent with the water activity criterion. On the other hand, even with the inclusion of NNF into CNT, the theory predicts a maximum in J_{hom} for pure water at around 210 K. Such behavior is at odds with experimental results (Manka et al., 2012), and is ascribed to a strong increase in the activation energy as temperature decreases. The activation energy controls the flux of water molecules from the bulk of the liquid to the ice germ (Kashchiev, 2000). Most studies estimate ΔG_{act} either by direct fit of CNT to measured nucleation rates, or from bulk estimates of viscosity, self-diffusivity and dielectric relaxation time (Ickes et al., 2015). The association of bulk properties with ΔG_{act} relies on the assumption that the diffusion across the liquid-ice interface is similar to the molecular diffusion in the bulk of the liquid (Kashchiev, 2000). MD results however suggest that the properties of water in the vicinity of the ice germ differ from the bulk, casting doubt into such approach (e.g., Kawasaki and Tanaka, 2010; Singh and Bagchi, 2014). Unlike for the interfacial energy where several theoretical models have been proposed (e.g., Spaepen, 1975; Digilov, 2004; Barahona, 2014), the phenomenological treatment of ΔG_{act} has been limited. One possible reason is that interface transfer is associated with
random fluctuations near the ice-liquid interface, and therefore difficult to treat in terms of macroscopic variables. However several relations allow to describe the evolution of fluctuating systems in terms of measurable variables and their relaxation rates. Among them the fluctuation-dissipation theorem that describes the relation between global and local perturbations (Jou et al., 2010), and the fluctuation theorem describing the work distribution in a fluctuating system (Crooks, 1999) have found widespread application in describing the evolution of small systems (Bustamante et al., 2005). With few exceptions (e.g., Røsjorde et al., 2000), such relations however have not made their way into descriptions of the ice nucleation process. ## ACPD 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures I ✓ ▶I Back Close Full Screen / Esc Printer-friendly Version ## 5 2 Theory This section presents the theoretical basis of the proposed model. The ice germ is assumed to form away from the air-liquid interface so that it is not affected by surface tension effects. The water molecules in the liquid phase are assumed to be in close proximity to the ice—liquid interface so that diffusion through the bulk of the water can be neglected. This is justified as it is energetically more favorable to incorporate molecules close to ice germ than those far away from it. Direct interface transfer is thus the dominant growth mechanism of the ice germ (Kashchiev, 2000). Following these considerations the homogeneous nucleation rate can be written in general form as (Kashchiev, 2000), $$J_{\text{hom}} = \frac{Zf^*}{V_{\text{w}}} \exp\left(-\frac{\Delta G_{\text{hom}}}{k_{\text{B}}T}\right), \tag{1}$$ where $v_{\rm w}$ is the molecular volume of water in the bulk, f^* is the impingement factor of the water molecules to the ice germ, and Z is the Zeldovich factor given by (Kashchiev, 2000), $$Z = \left[\frac{\Delta G_{\text{hom}}}{3\pi k_{\text{B}} T (n^*)^2} \right]^{1/2}.$$ (2) Discussion Paper Discussion Paper Discussion Paper Discussion Paper ## **ACPD** 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page T Abstract Introduction Conclusions References Tables Figures Back Full Screen / Esc Printer-friendly Version $$\Delta G_{\text{hom}} = \frac{4}{27} \frac{\left[\Gamma_{\text{w}} s \left(\Delta h_{\text{f}} - \Gamma_{\text{w}} k_{\text{B}} T \ln a_{\text{w}}\right)\right]^{3}}{\left[k_{\text{B}} T \ln \left(\frac{a_{\text{w}}^{2}}{a_{\text{weag}}}\right)\right]^{2}}.$$ (3) where $\Gamma_{\rm w}=1.46$ is the coverage of the ice-water interface, and s=1.105 defines the lattice geometry of the ice germ. The value of $\Gamma_{\rm w}$ results from the explicit construction of the interface following the rules: (i) maximize the density, (ii) disallow octahedral holes and (iii) preference for tetrahedral holes (Spaepen, 1975). The value of s is obtained assuming that the germ has a staggered structure lying somewhere between cubic and hexagonal ice (Malkin et al., 2012). Compared to common expressions for $\Delta G_{\rm hom}$ derived from CNT, Eq. (3) has the advantage that it does not depend on an explicit parameterization of $\sigma_{\rm iw}$, for which there is large uncertainty. Even though it is formulated on a purely theoretical basis, application of Eqs. (1) to (3) has been shown to reproduce observed freezing temperatures (Barahona, 2014). The impingement factor is the frequency of attachment of water molecules to the ice germ. For steady state nucleation it is given by (Kashchiev, 2000), $$f^* = \frac{\gamma D Z_1 \Omega}{d_0},\tag{4}$$ where $\gamma \approx 1$ is the sticking coefficient, D the diffusion coefficient for interface transfer, Ω the surface area of the germ, d_0 the molecular diameter and $Z_1 \approx v_{\rm w}^{-1}$ the monomer concentration. Uncertainty in the determination of f^* results mostly from the calculation of D, which may differ from the bulk self-diffusivity of water. The most commonly used approximation to D was derived from transition state theory by Turnbull and Fisher (1949) (see Sect. 2.2), who assumed that the activation energy for interface transfer is similar to that of the bulk, however the vibration frequency is that of an elemental reaction in ._ . **ACPD** 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page Discussion Pape Discussion Paper Discussion Introduction Conclusions **Abstract** References Tables Figures I◀ Back Full Screen / Esc Printer-friendly Version Interactive Discussion 20 18157 $D = f(T, a_{w})D_{co}, (5)$ where D_{∞} is self-diffusivity of water in the bulk . Since D_{∞} has been measured to $T \sim 180\,\mathrm{K}$ (Smith and Kay, 1999), D can be calculated provided that a suitable form $f(T,a_{\mathrm{W}})$ is known. In principle $f(T,a_{\mathrm{W}})$ can be found by fitting nucleation rate measurements. It is however desirable to obtain an expression for $f(T,a_{\mathrm{W}})$ independent of J_{hom} . To this end a heuristic approach is developed as follows. ## 2.1 Activation energy Similarly to Turnbull and Fisher (1949) it is assumed that interface transfer requires the formation of a transient state. However instead of each molecule moving independently across the interface, the formation of the transient state requires the collective rearrangement of several water molecules. The probability of such collective arrangement is given by $f(T, a_w)$. This view does not imply that water is incorporated in clusters to the ice, but rather that the rearrangement of the molecules facilitates the incorporation of each molecule into the preexisting ice lattice (Fig. 1). Such lattice is assumed to be the exposing surface of a metastable ice germ. This view is supported by MD simulations showing the increase in the fraction of four-coordinated water prior to nucleation (e.g., Moore and Molinero, 2011; Matsumoto et al., 2002) and theoretical models where the self-diffusion of supercooled liquids is controlled by their configurational entropy (Adam and Gibbs, 1965). An key aspect of the transient state is that it has a higher free energy than that of bulk water, which stems from a lowering of the entropy as molecules organize into an ice-like structure and an increase of the enthalpy from the breaking of hydrogen bonds (e.g., Bullock and Molinero, 2013). In a macroscopic system the spontaneous formation of such state is impossible since it violates the second law of thermodynamics. However iscussio ## ACPD 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page Discussion Paper Discussion Paper Discussion Abstract Introduction Conclusions References Tables Figures Full Screen / Esc Printer-friendly Version Interactive Discussion 18158 in the microscopic system such apparent violations are compensated by energy dissipation in form of heat and the increase of entropy in other subsystems (Bustamante et al., 2005). Thus, one can think of of the liquid phase as a distribution of subsystems in which some evolve in apparent violation of the second law. The work distribution in such system is governed by the fluctuation theorem (Crooks, 1999), $$\frac{P(W)}{P(-W)} = \exp\left(\frac{W - \Delta G}{k_{\rm B}T}\right),\tag{6}$$ where P(W) and P(-W) correspond to the work probability of the forward and reversed process between two states of a system, respectively, ΔG their equilibrium free energy difference, and W the non-equilibrium work between the two states. Equation (6) is one of the few thermodynamic relations valid in systems away from equilibrium (Bustamante et al., 2005). In writing Eq. (6) is has been assumed that the system is incompressible so that ΔG approximates the Helmholtz free energy difference. The difference $W - \Delta G$ approximates the dissipated work, $W_{\rm diss}$, between the two states (Bustamante et al., 2005; Jou et al., 2010). Consider a subsystem of size $n_{\rm t}$ involved in the transfer of molecules across the ice–liquid interface. At equilibrium the molecules move freely across the interface and $\Delta G = G_{\rm liq} - G_{\rm ice,eq} = W = 0$, being $G_{\rm liq}$ and $G_{\rm ice,eq}$ the Gibbs free energy of bulk liquid and ice, respectively (red line, Fig. 1). As the system moves away from equilibrium an energy barrier for interface transfer is created, i.e., W > 0 and $\Delta G < 0$ (blue and black lines, Fig. 1). To estimate the dissipated work we consider the reversed process, that is, molecules spontaneously leaving the lattice into the bulk of the liquid. To move away from the ice lattice, molecules should gain energy equal to $G^* - G_{\rm ice}$, being G^* the energy of the transient state. On the other hand, if such process could be carried out in a completely reversible manner then molecules would only need $G_{\rm liq} - G_{\rm ice}$ to leave the lattice. With this $W - \Delta G = G^* - G_{\rm liq} = n_{\rm t} \Delta \mu_{\rm act}$, being $\Delta \mu_{\rm act}$ the specific activation energy for interface transfer. If the subsystem follows the same trajectory but in the opposite direction, i.e., the forward process, then $W - \Delta G = -n_{\rm t} \Delta \mu_{\rm act}$. That is, the energy **ACPD** 15, 18151-18179, 2015 **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures l∢ ≻l 1 Close Full Screen / Esc Back Printer-friendly Version Considering only those subsystems that move across the interface we assume P(W) + P(-W) = 1. Using this Eq. (6) can be rearranged into, $$F(W) = \left[1 + \exp\left(-\frac{W - \Delta G}{k_{\rm B}T}\right) \right]^{-1}.$$ (7) Using $f(T, a_w) = P(W)$ and $W - \Delta G = -n_t \Delta \mu_{act}$ we obtain, $$f(T, a_{\rm w}) = \left[1 + \exp\left(\frac{n_{\rm t}\Delta\mu_{\rm act}}{k_{\rm B}T}\right)\right]^{-1}.$$ (8) Since dissipation comes mostly from collective rearrangement,
the subsystem can be approximated as internally reversible. This means that there is no activation energy for movement confined within the boundaries of the subsystem. Within this framework a molecule moving from the bulk of the ice to the bulk of the liquid will experience a change in chemical potential equal to the excess free energy of fusion of water, i.e., $\Delta \mu_{\rm act} \approx -\Delta \mu_{\rm f}$. Thus we write, $$f(T, a_{\rm w}) = \left[1 + \exp\left(\frac{-n_{\rm t}\Delta\mu_{\rm f}}{k_{\rm B}T}\right)\right]^{-1}.$$ (9) Using $\Delta \mu_{\rm f} = -k_{\rm B}T \ln \left(\frac{a_{\rm w}}{a_{\rm wead}}\right)$ into Eq. (9) we obtain $$f(T, a_{w}) = \left[1 + \left(\frac{a_{w}}{a_{w,eq}}\right)^{n_{t}}\right]^{-1},\tag{10}$$ where $a_{\rm w,eq}$ is the equilibrium water activity. To complete the derivation $f(T,a_{\rm w})$ it is necessary to specify the size of the subsystem, n_t . Unlike ΔG , W is not a thermodynamic potential and therefore depends on the trajectory of the system. Thus if there 18160 **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page **Abstract** Introduction Conclusions References **Tables** **Figures** \triangleright I Back Close **Printer-friendly Version** Interactive Discussion Discussion Paper Discussion Paper Collecting terms into Eq. (1) we obtain, $$J_{\text{hom}} = \left(\frac{Z\Omega}{v_{\text{w}}}\right) \frac{D_{\infty} f(T, a_{\text{w}})}{v_{\text{w}} d_0} \exp\left(-\frac{\Delta G_{\text{hom}}}{k_{\text{B}} T}\right) = J_0 \exp\left(-\frac{\Delta G_{\text{hom}}}{k_{\text{B}} T}\right), \tag{11}$$ where J_0 is referred as the preeexponential factor. Since water is a glass-forming substance, the temperature dependency of D_{∞} can be described by the Vogel–Fulcher–Tammann (VFT) equation, $$D_{\infty} = D_0 \exp\left[-\frac{E}{(T - T_0)}\right],\tag{12}$$ where D_0 , E and T_0 are fitting parameters (Table 1, Smith and Kay, 1999). At temperatures relevant for homogeneous ice nucleation the exponential term in Eq. (8) is expected to be much greater than one (although such is not the case when $a_{\rm w} \sim a_{\rm w,eq}$). Using this and substituting Eq. (12) into Eq. (11) we obtain, $$J_{\text{hom}} \approx \left(\frac{D_0}{v_{\text{w}} d_0}\right) \left(\frac{Z\Omega}{v_{\text{w}}}\right) \exp\left\{-\frac{1}{k_{\text{B}} T} \left[\frac{k_{\text{B}} T E}{(T - T_0)} + k_{\text{B}} T n_{\text{t}} \ln\left(\frac{a_{\text{w}}}{a_{\text{w,eq}}}\right) + \Delta G_{\text{hom}}\right]\right\},\tag{13}$$ Equation (13) has the form proposed by Turnbull and Fisher (1949). Thus the activation energy can be derived as, $$\Delta G_{\text{act}} = k_{\text{B}} T \left[\frac{E}{(T - T_0)} + n_{\text{t}} \ln \left(\frac{a_{\text{w}}}{a_{\text{w,eq}}} \right) \right]. \tag{14}$$ ACPD Discussion Paper 15, 18151-18179, 2015 **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures I₫ ►I • • Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion Discussion Paper Discussion Paper $$J_{\text{hom}} \approx \left(\frac{D_0}{v_w d_0}\right) \left(\frac{Z\Omega}{v_w}\right) \exp\left(-\frac{\Delta G_{\text{act}} + \Delta G_{\text{hom}}}{k_{\text{B}}T}\right).$$ (15) #### 2.2 Common form of CNT In most studies CNT is used in a more simplified form than presented in Eq. (1) (e.g., Khvorostyanov and Curry, 2004; Zobrist et al., 2007; Murray et al., 2010; Ickes et al., 2015). Typically, the expression of Einstein (1956) is used to relate diffusivity and viscosity and the energy of activation of water is assumed to have the same value as in the bulk (Kashchiev, 2000). Other assumptions include a semi-spherical ice germ, and negligible mixing effects during the germ formation (Barahona, 2014). These considerations lead to the commonly used CNT expression for J_{hom} (Turnbull and Fisher, 1949), $$J_{\text{hom}} = \left(\frac{N_{\text{c}}k_{\text{B}}T}{h}\frac{\rho_{\text{w}}}{\rho_{\text{i}}}\right)\left(\frac{Z\Omega}{v_{\text{w}}}\right) \exp\left(-\frac{\Delta G_{\text{act}} + \Delta G_{\text{CNT}}}{k_{\text{B}}T}\right) = J_{0, \text{ CNT}} \exp\left(-\frac{\Delta G_{\text{CNT}}}{k_{\text{B}}T}\right)$$ (16) where $N_{\rm c}$ is the number of atoms in contact with the ice germ, and $\rho_{\rm w}$ and $\rho_{\rm i}$ are the bulk liquid water and ice density, respectively. $\Delta G_{\rm CNT}$ is the energy of formation of the ice germ, which is commonly written in the form (Pruppacher and Klett, 1997), $$\Delta G_{\text{CNT}} = \frac{16\pi\sigma_{\text{iw}}^3 v_{\text{w}}^2}{3(k_{\text{B}}T \ln S_{\text{i}})^2},\tag{17}$$ ACPD Discussion Paper Discussion Paper Discussion Paper Discussion Pape 15, 18151-18179, 2015 ## **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures I**∢** ►I **→** Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 18162 where $\sigma_{\rm iw}$ is th ice-water interfacial energy, and $S_{\rm i}$ the saturation ratio with respect to ice. Other symbols are defined in Table 1. When using Eqs. (16) and (17), $\Delta G_{\rm act}$ and $\sigma_{\rm iw}$ are typically considered free parameters. #### 3 Discussion As temperature decreases the configurational entropy of water decreases increasing the energy required to break hydrogen bonds, thus the self-diffusivity of water decreases (Adam and Gibbs, 1965). Similarly, as T decreases the energy associated with the molecular rearrangement within the interface increases, which results from a more negative excess energy of fusion. The latter can also be understood as an increase in the irreversibility of the liquid–ice transformation as the system moves away form thermodynamic equilibrium, therefore increasing the dissipated work, $W_{\rm diss}$. As a result, $\Delta G_{\rm act}$ increases monotonically as T decreases (Fig. 2). By definition, the rearrangement component of $\Delta G_{\rm act}$, $W_{\rm diss}$, for $a_{\rm w}$ = 1 is equal to zero at T = 273.15 K, i.e., the equilibrium temperature the bulk ice-water system. For T < 250 K it corresponds to about half of $\Delta G_{\rm act}$. An important aspect of Eq. (14) is that it predicts an effect of water activity on the activation energy. The dependency of $\Delta G_{\rm act}$ on $a_{\rm w}$ is however much weaker than on T. Decreasing $a_{\rm w}$ from 1.0 to 0.9 leads only to about 10% decrease in $\Delta G_{\rm act}$ (Fig. 2). This is caused by a lowering in the dissipated work, $W_{\rm diss} = -n_{\rm t}\Delta\mu_{\rm f}$, with decreasing $a_{\rm w}$. Lowering $a_{\rm w}$ reduces the chemical potential of water but not that of ice as it is likely that no solute is incorporated into the ice germ during the early stages of ice formation (Barahona, 2014), therefore reducing $\Delta\mu_{\rm f}$. $\Delta G_{\rm hom}$ (Eq. 3) is much more sensitive to $a_{\rm w}$ and dominates the dependency of $J_{\rm hom}$ on $a_{\rm w}$. Empirical estimates of $\Delta G_{\rm act}$ have been developed in several studies, and were recently reviewed by Ickes et al. (2015). The authors found that the usage of the correlation derived by Zobrist et al. (2007) from self-diffusivity measurements (Smith and Kay, 1999), along with the fit of Reinhardt and Doye (2013) for $\sigma_{\rm iw}$, into Eq. (16) produced ACPD 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures I⁴ ■ Image: Close State S Full Screen / Esc Printer-friendly Version $$\Delta G_{\text{act},Z07} = \frac{\kappa_{\text{B}} T^2 E}{(T - T_0)^2}.$$ (18) Equation (18) gives $\Delta G_{\rm act}$ around the mean of common models used in the literature (see Fig. 1 of Ickes et al., 2015). Thus the model of Zobrist et al. (2007) will be used as benchmark for comparison. However $\Delta G_{\rm act}$ calculated using the correlation Jeffery and Austin (1997) is also presented in Fig. 2 for reference. Although the latter is also derived from the bulk properties of water, it typically results in values of $\Delta G_{\rm act}$ lower than $\Delta G_{\rm act}$ 707. Figure 2 shows that $\Delta G_{\rm act,Z07}$ increases almost quadratically as T decreases. The correlation of Jeffery and Austin (1997) results in an even stronger increase in $\Delta G_{\rm act}$ for T < 200 K. This feature is common in models derived from the properties of bulk water (Ickes et al., 2015). In general $\Delta G_{\rm act,Z07}$ is larger than $\Delta G_{\rm act}$ calculated from Eq. (14). Moreover, the latter increases almost linearly as T decreases instead of the quadratic increase of $\Delta G_{\rm act,Z07}$. $\Delta G_{\rm act,Z07}$ and Eq. (14) are the closest around $T \approx 235$ K, which is near the nominal homogeneous freezing threshold of water droplets. The difference between the two grows larger with decreasing temperature; at T = 180 K $\Delta G_{\rm act,Z07}$ is greater than $\Delta G_{\rm act}$ by almost a factor of two. Figure 3 compares the preexponential factor calculated from Eq. (11) against the common CNT formulation, Eq. (16). Equation (18) was used to calculate $\Delta G_{\rm act}$ in the latter. For T < 240 K the factors $(\frac{D_0}{v_{\rm w} d_0})$ and $(\frac{N_{\rm c} k_{\rm B} T}{h} \frac{\rho_{\rm w}}{\rho_{\rm i}})$ differ by less than a factor of two. Thus the difference between J_0 and $J_{0, \, {\rm CNT}}$ is almost entirely due to $\Delta G_{\rm act}$. For T > 230 K usage of either $\Delta G_{\rm act,07}$ or Eq. (14) introduces less than two orders of magnitude ACPD 15, 18151-18179, 2015 ## **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures \triangleright **→** Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion cussion Pap Discussion Pape iscussion F Discussion Pape Discussion difference in J_0 . However for T < 230 K using $\Delta G_{\text{act 07}}$ leads to a much faster
decrease in J_0 than with Eq. (14), which is explained by the quadratic increase in $\Delta G_{\rm act.07}$ as T decreases. At 180 K, they differ by almost 10 orders of magnitude. As expected, lowering the water activity slightly increases J_0 since ΔG_{act} is slightly reduced. Despite the noticeable dependency of ΔG_{act} on T, J_{hom} is only sensitive to variation in $\Delta G_{\rm act}$ at low T. This is illustrated in Fig. 2. For $a_{\rm w}=1$ and T>230 K, $\Delta G_{\rm hom}\gg\Delta G_{\rm act}$, i.e., the nucleation rate is completely controlled by the nucleation work. As T decreases ΔG_{hom} and ΔG_{act} become comparable and for $T < 200 \,\text{K}$, J_{hom} is mainly controlled by $\Delta G_{\rm act}$. Since most experimental measurements of $J_{\rm hom}$ are carried out around 235 K (Fig. 4), the lack of sensitivity of J_{hom} to ΔG_{act} at these conditions may lead to the incorrect notion that ΔG_{act} is constant. Such misconception may not be critical for the homogeneous freezing of pure water at atmospheric conditions since it rarely occurs at T < 230 K. However it may introduce error in J_{hom} for $a_{\text{w}} < 1$ (Fig. 2, black lines) since ΔG_{hom} and ΔG_{act} become comparable at temperatures relevant to the formation of cirrus from haze aerosol particles (Barahona and Nenes, 2008). As direct measurements of ΔG_{act} are not available, the skill of ΔG_{act} in reproducing experimental measurements is assessed through evaluation of J_{hom} . For common formulations of CNT (Sect. 2.2) this has the caveat that such comparison is influenced by specification of other parameters of the theory. This is not the case when using the NNF formulation (Eq. 3) since it does not explicitly depend on σ_{iw} . It was shown in B14 that using $\Delta G_{\text{act }07}$ and Eq. (3) into Eq. (16) reproduced measured J_{hom} for T > 230 K. The results of B14 are shown in Fig. 4 along with several experimental measurements, empirical correlations, and results from the formulation of CNT presented in Sect. 2.2. Compared to the formulation of B14, J_{hom} from Eq. (11) only differs in the specification of J_0 which mainly depends on ΔG_{act} . As expected, for T > 230 and $a_w = 1$ the formulation of B14 and Eq. (11) produce similar J_{hom} , and within experimental variability and model uncertainty (typically about 3 orders of magnitude) of measured values. Notably J_{hom} predicted by NNF is very close to the data of Riechers et al. (2013) who used a microfluidic device to obtain an accurate estimation of T. For $T < 230 \,\mathrm{K}$, J_{hom} ## **ACPD** 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page **Abstract** Introduction Conclusions References **Tables Figures** \triangleright Back Close Full Screen / Esc 1 ## **ACPD** 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page Abstract Introduction I Conclusions References Tables Figures **→** \triangleright Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion from B14 is much lower than measured values (by up to 9 orders of magnitude), which is also the case for the CNT formulation, Eq. (16), when using $\Delta G_{\rm act,07}$. In both formulations $J_{\rm hom}$ decreases for T below 210 K, which results from an strong increase in $\Delta G_{\rm act,07}$ and a decrease in J_0 . At the same conditions, Eq. (11) predicts a higher $J_{\rm hom}$ and within experimental uncertainty of measurements. Using Eq. (14) within the CNT formulation, Eq. (16), leads to a similar result. Thus the higher $J_{\rm hom}$ and the better agreement with the experimental measurements results from the usage of the formulation of $\Delta G_{\rm act}$ presented here. Most experimental measurements of J_{hom} have been carried out for $a_{\text{w}} = 1$. However homogeneous freezing for $a_w < 1$ is likely important for the formation of cirrus at low T (e.g., Koop et al., 2000). Figure 4 (right panel) shows J_{hom} for $a_w = 0.9$ from Eqs. (16) and (11), and using $\Delta G_{\text{act 07}}$ and Eq. (14) to compute the activation energy. The correlation derived by Koop et al. (2000) is also reproduced along with available experimental data (Alpert et al., 2011; Knopf and Rigg, 2011). For the latter only data reported for T < 221 K is shown to avoid heterogeneous freezing effects. For T > 218 K, J_{hom} from all formulations agree within three orders of magnitude, and within experimental uncertainty of the measured rates. However for T < 216 K, calculated J_{hom} is higher than the experimental results. This would indicate that J_{hom} is less sensitive to T at $a_{w} = 0.9$ than at $a_{\rm w}$ = 1.0. Another possibility may be a slight decrease in $a_{\rm w}$ during the experiments. Alpert et al. (2011) reports an uncertainty in initial a_w of 0.01 which explains the scatter of the data around $T \sim 218 \,\mathrm{K}$. However Knopf and Rigg (2011), who used a similar technique, discuss the possibility of a slight decrease in a_w of their test solutions as T decreases. Figure 4 (right panel) shows that a decrease of 0.02 in $a_{\rm w}$ during the experiments would be enough to explain the observed J_{hom} . More research and further experimentation is required to clarify this point. At low temperature ($T < 210 \,\mathrm{K}$) the usage of Eq. (14) leads to a higher J_{hom} than when $\Delta G_{\mathrm{act},07}$ is used, for both formulations of CNT. For $a_{\mathrm{w}} < 1$ Eqs. (16) and (11) do not overlap as is the case for $a_{\mathrm{w}} = 1$, which results from the different sensitivity to a_{w} of both formulations. Interestingly, for $a_{\mathrm{w}} = 1$ and $a_{\mathrm{w}} = 0.9$, J_{hom} reaches similar values at $T = 180 \,\mathrm{K}$, being just about an order of magnitude higher in the latter due to the sensitivity of ΔG_{act} to a_w . This shows that a low T, J_{hom} is mainly controlled by J_0 , hence ΔG_{act} . #### **Conclusions** This work advances a phenomenological description of the process of interface transfer of water molecules from the liquid phase to the ice during the early stages of nucleation. Unlike previous approaches, the model presented here does not assume that the water properties in the liquid-ice interface are the same as those of the bulk. Instead a theoretical approach is proposed where the interaction of several water molecules is required for interface transfer. Application of this model resulted in a thermodynamic definition of $\Delta G_{\rm act}$. As D_{∞} and $\sigma_{\rm iw}$ can also be defined on a thermodynamic basis (Adam and Gibbs, 1965; Barahona, 2014), this work gives support to the assertion of Koop et al. (2000) that the ice nucleation rate can be determined entirely by thermodynamics. The approach proposed here elucidates two contributions to the activation energy. The first one is the self-diffusion process in the bulk water, that is, the breaking of hydrogen bonds in the liquid phase. The second is the work dissipated during interface transfer, associated with the rearrangement of the water molecules within the ice-liquid interface. The commonly used model of Turnbull and Fisher (1949) neglected the latter. However since homogeneous ice nucleation occurs away from equilibrium, interface transfer implies an energy cost to the system. At temperatures relevant for homogeneous ice nucleation it represents about half of ΔG_{act} . It was shown that at low temperature interface transfer has the largest effect on the nucleation rate. For such conditions $\Delta G_{\rm act} \sim \Delta G_{\rm hom}$ and variations in the preexponential factor may dominate the variation in J_{hom} . On the other hand moderate variation in $\Delta G_{\rm act}$ will have a limited effect on $J_{\rm hom}$ for pure water droplets since they typically freeze at $T > 230 \,\mathrm{K}$ where $\Delta G_{\mathrm{hom}} \gg \Delta G_{\mathrm{act}}$. However ΔG_{act} may have a marked influence for **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page **Abstract** Introduction Conclusions References > **Figures Tables** I \triangleright Back Close Full Screen / Esc Printer-friendly Version 15, 18151-18179, 2015 ## **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion the homogeneous freezing of haze aerosol which occurs at very low temperature. Also $\Delta G_{\rm act}$ may impact the nucleation rate when the same formulation is used for heterogeneous ice nucleation as the nucleation work is typically lower than in the homogeneous case. For T > 230 K the formulation of $\Delta G_{\rm act}$ presented here predicts values close to those obtained using empirical correlations, particularly that of Zobrist et al. (2007). However for T < 230 K, Eq.(14) predicts a linear increase in $\Delta G_{\rm act}$ with decreasing T, and differs from the nonlinear tendency typically found when $\Delta G_{\rm act}$ is assumed to be determined solely by the self-diffusivity of bulk water (Ickes et al., 2015). As a result, at low T the preexponential factor, hence the nucleation rate, predicted using empirical formulations of $\Delta G_{\rm act}$ tends to be lower than found in this work. Introducing the new formulation of $\Delta G_{\rm act}$ into a generalized form of CNT (Eq. 1) and using the NNF framework to define $\Delta G_{\rm hom}$, resulted in good agreement of $J_{\rm hom}$ with observations, even at very low T where it is underestimated by most models. This is remarkable since no parameters of the theory were found by fitting nucleation rates.
Introducing Eq. (14) into a common formulation of CNT and with $\sigma_{\rm iw}$ constrained as in B14 also led to a good agreement of $J_{\rm hom}$ with measured values. For $a_{\rm w}=0.9$ and T>218 K predicted $J_{\rm hom}$ is in agreeement within experimental uncertanity with reported experimental values, however it tends to be higher than measurements at lower T. It is not clear whether systematic deviation in $a_{\rm w}$ during the experiments, or unkown factors not considered in the theoretical models are the source of this discrepancy and more research is needed to elucidate this point. The NNF model, which can be independently constrained and evaluated, may be more suitable to investigate such differences between theory and measurements than common formulations of CNT where $\Delta G_{\rm act}$ and $\sigma_{\rm iw}$ must be fitted to measured $J_{\rm hom}$. Guided by MD results, it was assumed that a molecule crossing the interface would interact with four other molecules, so that $n_{\rm t}$ = 16. This is expected at low T since the water structure becomes more ice-like, however $n_{\rm t}$ may be a function of the temperature. For example, the size of cooperative regions in water is known to be a function of the configurational entropy and therefore of temperature (Adam and Gibbs, 1965). It is not clear whether that should also be the case for interface transfer. Another source of uncertainty has to do with the specification of water properties at very low T. Several studies (e.g., Johari et al., 1994; Koop and Zobrist, 2009) have used some form of thermodynamic continuation below $T \sim 235\,\mathrm{K}$ to define $a_{\mathrm{w,eq}}$ and Δh_{f} , which is also used in this work. These functions are not unique since several combinations of parameters can lead to thermodynamically consistent solutions. Progress in MD and further experimentation may shed light on these issues. This work centers on the activation energy as a fundamental parameter. Equation (15) however suggest that the flux of water molecules from the bulk to the ice may be better understood in terms of the bulk self-diffusivity of water and the probability of interface transfer, $f(T, a_{\rm w})$. These two quantities have a more specific physical meaning than $\Delta G_{\rm act}$. D_{∞} has been independently measured (e.g., Smith and Kay, 1999), whereas $f(T, a_{\rm w})$ is related to the work dissipated during ice nucleation and can in principle be obtained from MD simulations. From their analysis of different models lckes et al. (2015) concluded that at low T either σ_{iw} is thermodynamically undefined or the temperature dependency of ΔG_{act} reverses. Such predictions are mistaken. This work shows that both ΔG_{act} and σ_{iw} can be defined on a thermodynamic basis. The work of lckes et al. (2015) however shows the difficulties in ascribing physical behavior to the parameters of CNT by fitting experimental results. The independent phenomenological formulation presented here may be more amenable to testing and expansion. In turn, a physically-based definition of the parameters of CNT may improve the development of parameterizations of ice formation in cloud models, and lead to a better understanding of ice processes in the atmosphere. Acknowledgements. Donifan Barahona was supported by the NASA Modeling, Analysis and Prediction program under WBS 802678.02.17.01.25. **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures I Back **→** \triangleright Close Full Screen / Esc Printer-friendly Version Adam, G. and Gibbs, J. H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., 43, 139-146, 1965. 18158, 18163, 18167, 18169 5 Alpert, P. A., Aller, J. Y., and Knopf, D. A.: Ice nucleation from aqueous NaCl droplets with and without marine diatoms, Atmos. Chem. Phys., 11, 5539-5555, doi:10.5194/acp-11-5539-2011, 2011, 18166 Barahona, D.: Analysis of the effect of water activity on ice formation using a new thermodynamic framework, Atmos. Chem. Phys., 14, 7665-7680, doi:10.5194/acp-14-7665-2014, 2014. 18154, 18155, 18157, 18162, 18163, 18167, 18175 Barahona, D. and Nenes, A.: Parameterization of cirrus formation in large scale models: homogeneous nucleation, J. Geophys. Res., 113, D11211, doi:10.1029/2007JD009355, 2008. 18153, 18165 Barahona, D. and Nenes, A.: Dynamical states of low temperature cirrus, Atmos. Chem. Phys., 11. 3757–3771. doi:10.5194/acp-11-3757-2011. 2011. 18153 Barahona, D., Rodriguez, J., and Nenes, A.: Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing, J. Geophys. Res., 15, D23213, doi:10.1029/2010JD014273, 2010. 18153 Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison, H., Phillips, V., and Eichmann, A.: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5), Geosci. Model Dev., 7, 1733-1766, doi:10.5194/gmd-7-1733-2014, 2014. 18153 Bartell, S. L. and Chushak, Y. G.: Nucleation of Ice in Large Water Clusters: Experiment and Simulation, in: Water in Confining Geometries, edited by: Buch, V. and Devlin, J. P., Springer Science and Business Media, New York, 399-424, 2003. Buhariwalla, C. R., Bowles, R. K., Saika-Voivod, I., Sciortino, F., and Poole, P. H.: Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water, Eur. Phys. J. E., 38, doi:10.1140/epie/i2015-15039-x, 2015. 18153 Bullock, G. and Molinero, V.: Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions. Faraday Discuss... 167, 371–388, doi:10.1039/C3FD00085K, 2013. 18153, 18158 **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page **Abstract** Introduction Conclusions References **Tables** **Figures** I \triangleright Close Back Full Screen / Esc **Printer-friendly Version** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures |4 | F| | Back Close Full Screen / Esc Printer-friendly Version - Bustamante, C., Liphardt, J., and Ritort, F.: The nonequilibrium thermodynamics of small systems, Phys. Today, 58, 43–44, doi:10.1063/1.2012462, 2005. 18155, 18159 - Crooks, G. E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E, 60, 2721, doi:10.1103/PhysRevE.60.2721, 1999. 18155, 18159 - Digilov, R. M.: Semi-empirical model for prediction of crystal–melt interfacial tension, Surf. Sci., 555, 68–74, 2004. 18155 - Einstein, A.: Investigation on the theory of the Brownian movement, Dover Publications Inc., New York, USA, 1956. 18162 - Espinosa, J., Sanz, E., Valeriani, C., and Vega, C.: Homogeneous ice nucleation evaluated for several water models, J. Chem. Phys., 141, 18C529, doi:10.1063/1.4897524, 2014. 18153 - Gettelman, A., Liu, X., Barahona, D., Lohmann, U., and Chen, C.: Climate impacts of ice nucleation, J. Geophys. Res., 117, D20201, doi:10.1029/2012JD017950, 2012. 18153 - Hagen, D. E., Anderson, R. J., and Kassner Jr., J. L.: Homogeneous condensation-freezing nucleation rate measurements for small water droplets in an expansion cloud chamber, J. Atmos. Sci., 38, 1236–1243, 1981. - Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters, Phys. Chem. Chem. Phys., 17, 5514–5537, 2015. 18154, 18155, 18158, 18162, 18163, 18164, 18168, 18169 - Jeffery, C. and Austin, P.: Homogeneous nucleation of supercooled water: results from a new equation of state, J. Geophys. Res., 102, 25269–25279, 1997. 18154, 18164 - Jensen, E. J., Diskin, G., Lawson, R. P., Lance, S., Bui, T. P., Hlavka, D., McGill, M., Pfister, L., Toon, O. B., and Gao, R.: Ice nucleation and dehydration in the Tropical Tropopause Layer, P. Natl. Acad. Sci. USA, 110, 2041–2046, 2013. 18153 - Johari, G., Fleissner, G., Hallbrucker, A., and Mayer, E.: Thermodynamic continuity between glassy and normal water, J. Phys. Chem., 98, 4719–4725, 1994. 18169, 18175 - Jou, D., Casas-Vázquez, J., and Lebon, G.: Extended Irreversible Thermodynamics, 4th Edn., Springer, the Netherlands, 2010. 18155, 18159 - Kärcher, B. and Burkhardt, U.: A cirrus scheme for global circulation models, Q. J. Roy. Meteor. Soc., 134, 1439–1461, doi:10.1002/Qj.301, 2008. 18153 - Kärcher, B. and Lohmann, U.: A parameterization of cirrus cloud formation: homogeneous freezing including effects or aerosol size, J. Geophys. Res., 107, 4698, doi:10.1029/2001JD001429, 2002. 18153 Paper - Kashchiev, D.: Nucleation: Basic Theory with Applications, Butterworth-Heinemann, Oxford, 2000. 18154, 18155, 18156, 18157, 18162 - Kawasaki, T. and Tanaka, H.: Formation of a crystal nucleus from liquid, P. Natl. Acad. Sci. USA, 107, 14036–14041, 2010. 18153, 18154, 18155 - Khvorostyanov, V. and Curry, J.: Critical humidities of homogeneous and heterogeneous ice nucleation: Inferences from extended classical nucleation theory, J. Geophys. Res., 114, D04207, doi:10.1029/2008JD011197, 2009. 18154 - Khvorostyanov, V. I. and Curry, J. A.: Thermodynamic theory of freezing and melting of water and aqueous solutions, J. Phys. Chem. A, 108, 11073–11085, 2004. 18154, 18162 - Knopf, D. A. and Rigg, Y. J.: Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates, J. Phys. Chem. A, 115, 762–773, 2011. 18166 - Koop, T. and Zobrist, B.: Parameterizations for ice nucleation in biological and atmospheric systems, Phys. Chem. Chem. Phys., 11, 10839–10850, 2009. 18169, 18175 - Koop, T., Luo, B., Tslas, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation
in aqueous solutions, Nature, 406, 611–614, 2000. 18153, 18166, 18167 - Liu, X. and Penner, J.: Ice nucleation parameterization for global models, Meteorol. Z., 14, 499–514, 2005. 18153 - Lohmann, U. and Kärcher, B.: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model, J. Geophys. Res., 107, 4105, doi:10.1029/2001JD000767, 2002. 18153 - Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J., and Salzmann, C. G.: Structure of ice crystallized from supercooled water, P. Natl. Acad. Sci. USA, 109, 1041–1045, 2012. 18153, 18157 - Manka, A., Pathak, H., Tanimura, S., Wölk, J., Strey, R., and Wyslouzil, B. E.: Freezing water in no-man's land, Phys. Chem. Chem. Phys., 14, 4505–4516, 2012. 18155 - Matsumoto, M., Saito, S., and Ohmine, I.: Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature, 416, 409–413, 2002. 18153, 18158, 18161 - Moore, E. B. and Molinero, V.: Structural transformation in supercooled water controls the crystallization rate of ice. Nature, 479, 506–508, 2011, 18153, 18158, 18161 **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures \triangleright I Back Close Full Screen / Esc Printer-friendly Version Paper Discussion Pape Moroni, D., Ten Wolde, P. R., and Bolhuis, P. G.: Interplay between structure and size in a critical crystal nucleus, Phys. Rev. Lett., 94, 235703, doi:10.1103/PhysRevLett.94.235703, 2005. 18153 Murphy, D. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131, 1539-1565, 2005. 18175 Murray, B., Broadley, S., Wilson, T., Bull, S., Wills, R., Christenson, H., and Murray, E.: Kinetics of the homogeneous freezing of water, Phys. Chem. Chem. Phys., 12, 10380–10387, 2010. 18154, 18162 Pruppacher, H.: A new look at homogeneous ice nucleation in supercooled water drops, J. Atmos. Sci., 52, 1924-1933, 1995. Pruppacher, H. and Klett, J.: Microphysics of Clouds and Precipitation, 2nd edn., Kluwer Academic Publishers, Boston, MA, USA, 1997. 18152, 18154, 18162, 18175 Reinhardt, A. and Dove, J. P.: Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling, J. Chem. Phys., 139, 096102, doi:10.1063/1.4819898, 2013. 18163 Riechers, B., Wittbracht, F., Hütten, A., and Koop, T.: The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty, Phys. Chem. Chem. Phys., 15, 5873-5887, 2013. 18165 Røsjorde, A., Fossmo, D., Bedeaux, D., Kjelstrup, S., and Hafskjold, B.: Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in condensation: I. Local equilibrium, J. Colloid Interf. Sci., 232, 178-185, 2000. 18155 Russo, J., Romano, F., and Tanaka, H.: New metastable form of ice and its role in the homogeneous crystallization of water, Nat. Mater., 13, 733-739, 2014. 18153 Singh, R. S. and Bagchi, B.: Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water, J. Chem. Phys., 140, 164503, doi:10.1063/1.4871388, 2014. 18153, 18155 Smith, R. S. and Kay, B. D.: The existence of supercooled liquid water at 150 K, Nature, 398, 788-791, 1999. 18158, 18161, 18163, 18169, 18175 Spaepen, F.: A structural model for the solid-liquid interface in monatomic systems, Acta Metall. Mater., 23, 729-743, 1975. 18154, 18155, 18157, 18175 Taborek, P.: Nucleation in emulsified supercooled water, Phys. Rev. B, 32, 5902, doi:10.1103/PhysRevB.32.5902, 1985. Turnbull, D. and Fisher, J. C.: Rate of nucleation in condensed systems, J. Chem. Phys., 17, 71–73, 1949, 18157, 18158, 18161, 18162, 18167 **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page Introduction **Abstract** Conclusions References > **Figures Tables** I \triangleright Back Close Full Screen / Esc **Printer-friendly Version** ## **ACPD** 15, 18151–18179, 2015 ## **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures I I I Back Close Full Screen / Esc Printer-friendly Version © BY **Discussion Paper** | $a_{\rm w}$ | Activity of water | |-------------------------------------|--| | a _{w.ea} | Equilibrium a_w between bulk liquid and ice (Koop and Zobrist, 2009) | | E, T_0 | Parameters of the VFT equation, 892 and 118 K, respectively (Smith and Kay, 1999) | | D ° | Diffusion coefficient for interface transfer | | D_{∞} | Self-diffusion coefficient of bulk water | | D_0^{∞} | Fitting parameter, 3.06 × 10 ⁻⁹ m ² s ⁻¹ (Smith and Kay, 1999) | | d_0^0 | Molecular diameter of water | | $f(T, a_{\rm w})$ | Interface transfer probability | | f^* | Impingement factor | | G | Gibbs free energy | | G^* | Gibbs free energy of the transient state | | $G_{\text{liq}}, G_{\text{ice}}$ | Gibbs free energy of liquid and ice, respectively | | $J_0, J_{0,\text{CNT}}$ | Pre-exponential factor calculated from Eqs. (11) and (16), respectively | | J_{hom} | Nucleation rate | | k _B | Boltzmann constant | | n* | Critical germ size | | N _c | Number of atoms in contact with the ice germ, $5.85 \times 10^{18} \mathrm{m}^{-2}$ (Pruppacher and Klett, 1997) | | n_{t} | Number of configurations of a subsystem, 16 | | $p_{\mathrm{s,w}},p_{\mathrm{s,i}}$ | Liquid water and ice saturation vapor pressure, respectively (Murphy and Koop, 2005) | | s | Geometric constant of the ice lattice, 1.105 mol ^{2/3} (Barahona, 2014) | | \mathcal{S}_{i} | Saturation ratio with respect to ice | | T | Temperature | | $V_{\rm W}$ | Molecular volume of water in ice (Zobrist et al., 2007) | | W | Non-equilibrium work | | $W_{ m diss}$ | Dissipated work | | Z | Zeldovich factor | | $\Delta G_{ m act}$ | Activation energy for ice nucleation | | ΔG_{hom} | Nucleation work, NNF framework | | ΔG_{CNT} | Nucleation work, CNT framework | | Δh_{f} | Heat of fusion of water (Barahona, 2014; Johari et al., 1994)* | | $\Delta a_{\rm w}$ | $a_{\rm w} - a_{\rm w,eq}$ | | $\Delta \mu_{f}$ | Excess free energy of water | | $\Delta \mu_{ m act}$ | Specific activation energy for interface transfer | | $\Gamma_{\rm w}$ | Molecular surface excess of at the interface, 1.46 (Barahona, 2014; Spaepen, 1975) | | $ ho_{w}, ho_{i}$ | Bulk density of liquid water and ice, respectively (Pruppacher and Klett, 1997) | | σ_{iw} | Ice-liquid interfacial energy (Barahona, 2014) | | $\Omega_{ m g}$ | Ice germ surface area | ^{*} A change in enthalpy of 50 (J mol⁻¹) was assumed for the transition between cubic and hexagonal ice. D. Barahona Title Page Introduction **Abstract** **ACPD** 15, 18151-18179, 2015 **Activation energy** Conclusions References **Tables Figures** [■ \triangleright Back Close Full Screen / Esc Figure 1. Scheme of the transfer of water molecules to a metastable ice germ. Red lines correspond to situations close to thermodynamic equilibirium whereas blue and black lines represent conditions progressively away from equilibrium (subscripts 1 and 2, respectively). G_{ice} , G_{liq} and G^* correspond to the Gibbs free energy of ice, liquid and the transient state, respectively. The cartoon at the top of the graph is a visualization of the interaction of water molecules during interface transfer. **ACPD** 15, 18151-18179, 2015 **Activation energy** D. Barahona Title Page Introduction **Abstract** Conclusions References > **Figures Tables** I Back Close Full Screen / Esc **Printer-friendly Version** **Figure 2.** Energy of activation represented by several models. Also presented are the dissipated work, $W_{\rm diss}$, and the work of nucleation $\Delta G_{\rm hom}$. Red lines and black lines correspond to $a_{\rm w}=0.9$ and $a_{\rm w}=1$, respectively. **ACPD** 15, 18151-18179, 2015 **Activation energy** D. Barahona Title Page Abstract Introduction Conclusions References Tables Figures Close Printer-friendly Version Figure 3. Preexponential factor using the common form of CNT (Sect. 2.2) and the model presented in this work, Eq. (11). For CNT the correlation of Zobrist et al. (2007) was used to calculate ΔG_{act} . **ACPD** 15, 18151–18179, 2015 **Activation energy** D. Barahona Title Page **Abstract** Introduction Conclusions References **Tables** **Figures** \triangleright Full Screen / Esc **Printer-friendly Version** **Figure 4.** Homogeneous ice nucleation rate calculated using Eq. (16) (label "CNT") and Eq. (11) (label "NNF"). $\Delta G_{\rm act}$ was defined as in Zobrist et al. (2007) (Z07) and using Eq. (14) (this work). Also presented are experimental results and empirical correlations obtained from the literature. **ACPD** 15, 18151-18179, 2015 **Activation energy** D. Barahona Title Page Conclusions References **Abstract** Tables Figures Introduction Back Close Full Screen / Esc Printer-friendly Version